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Abstract

The riport falls into six sections together with
five appendices. The work reported in each of the
first five sections is described in detail in the
corresponding appendix, which takes the form of a paper
accepted for publication by a research periodical.

The first investigation studies rotatable
partitions, i.e. those d-dimensional partitions whose
representations are invariant under rotation of the
axes of coordinates. If d is a power of a prime p,
the number of irrotatable partitions is divisible by p.
Toe number of rotatable partitions of small n is small
and easily calculated. Consequences include a
convenient check of the total number of partitions and
a Simple proof of the recently discovered fact that
the long conjectured form of tte generating function
of solid partitions is mistaken.

In the sec id section I find a general identity
involving 1-fu tions. Particular cases of this have
applications in partition theory.

The third section introduces a new combinatorial
idea, the n-stack, gives generating functions for the
number of n-stacks under certain restrictions and under
no restrictions and finds asymptotic values for these
numbers for large n.

The fourth appendix is a short, semi.-expository
paper correcting a statement by another author that a
particular problem in partition theory is unsolved.
To do this I give a new and simple derivation of the
behaviour for large n of the number of partitions of n
into just k parts. This has a picturesque
interpretr4 on in terms of railroad trucks.
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The fifth section finds necessary and sufficient
conditions that almost all graphs of a given kind on n
unlabelled nodes shall be connected. This condition
is closely related to that found earlier for the
labelled case.

The sixth section reports preliminary investigations
into the asymptotic expansions of, and relations between,
the number of connected and disconnected graphs of a
given kind on n labelled and on n unlabelled nodes when
n is large. This work is at present far from complete
but looks promising.
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Tho generating function for the number of

solid parlitions., rotatable partitions

1. A linear partition of a positive integer is
a solution in positive integers of the equation

n - m (mh h
h h ''h+

If p(n) is the number of such partitions, the generating

function is easily seen to be

1+ p(n)X T-T (1xk) -

n-i k=l

(see, for example, [121). A plane partition is a
solution of

n- h omhi (mhi >, max(mh+l.mh+ ))h, ! h h hl~' ,i+l "

If q(n) is the number of such partitions, then

(1.1) 1 + =-q(n)Xn  T7iXk)-k
n-1 k-1

as was first proved by Macmahon [141. His proof is
lengthy and Chaundy [21 produced a simpler (but still
fairly complicated) proof.
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Let r(n) be the nuniber of solid partitions, i.e.
solutions of

(1.2) n- --m' h, ij Iilj

m > max(m F
mhil I h +1xh+ ,1 ,jmhi+1,mh , i ,J+l

It has long been conjectured (but without great
confidence) that

00 n  r kk(k+l)!2
(1.3) 1 + '--r(n)X _ (1-Xk

Just before the contract period opened Dr A.O.L. Atkin
(then of the Atlas Computer Laboratory at Chilton,
Berkshire, England and now of the University of
Maryland) wrote to tell me that he and othurs had
proved (1.3) false, e'-sentially by evaluating the
coefficients of the smaller p.owers of X on each side.

The coefficients agreed up to X5 , but r(6) - 140

while the coefficient of X6 in the product on the right-
hand side of (1.3) is 141.

Atkin and his collaborators (I.G. Macdonald and
J. Mackay) used a computer to calculate the number of
d-dimensional partitions of fairly small n. The
(d-l)-dimensional partitions into unit parts correspond
one-to-one to the d-dimensional partitions into parts
of any size. I picked out those partitions which,
when expressed diogrammatically, are invariable under
rotation of the axes of coordinates. I found that, if
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d -pwhr p ia prime, then the number of
d-dimeamional partitions of aj:y n which Are not

rotatable is divisible by p. Hence the total number
of d-dimensional partitions of n is congruent (mod p)
to the number of rotatable partitions, For moderate
simed v the rotatable partitions are very few in
number and easily identified and counted. For d - 3
aod n - 6 there arc only two; for d - 4 and n - 6 and
unit parts there are none,

My result enabled me to check (and find copying
errors in) a table of numbers of partitions calculated
on a computer by mrans of a programme written by
Mackay, It also provides a very short proof that the
product on the right-hand side of (1.3) is not the
generating function for 3-dimenznonal partitions.. It

will be observed that d - pt or d + 1 - pt for every
d < 13, so the result is useful for all dimensions up
to 13. The result may yield information about the
structure of the generating function for r(n).

My method and results (including two tables) are
written up in Appendix I. to this report; this has been
accepted for publication in the Journal of the London
Mathematical Society.

In [24] I found an expression for &7(a,b,c), the
generating function for the number of solutions of
(1.2) subject to the additional conditions that

mIll ' a, '121 _ b, '2 1 1 - c, mhil - 0 (h+i>3).

I did a little further work this year trying to
determine 1(a,b~c,d), the generating function for the
number of solutions of (1.2) subject to

m*llI  a, '1 2 1 _ b, '2 1 1 $ c, ' 2 2 1  d, mhil - 0

(h>2 or i>2).

7
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II

The calculations became very complicated. The function
.n (a,b,c) had been expressed (and I wat 1j .sing to I
express Y7 (a,b,c,d)) in terms of the fiucLion ., where

a

- 1, g " Fj(i -xk -I  5-a o (a>o),

It seemed desirable to devote some study to the function
ra and its properties and relations and this and its

consequencps I describe in sections 2,3 and 4. Other-
wise I abandoned work on 41(a,b,c,d) for the present.
While I am still sure that this is worth completing when
time permits, it seemed good policy to pursue the more
immediately rewarding lines which opened up.

The disprouf of (1.3) is not, in this connection,
a severe blow. The conjecture had long ceased to be a
very plausible one. Again the correct form of the
generating function for the number of plane partitions
in (1.1) has been known for 50 years but this knowledge
has so far been of no help whatever in finding a simple,
transparent proof of the result.

m m m m m 8
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An identity in -function

2. We have

lrM (1-X7) a a ( a ' -  (a > 0)

X >1

and so

li a 9b (a+b)!

X->1 a+b aib!

the binomial coefficient which is also the number of
combiaationas of a+b things taken a at a time. There
is thus a correspondence between certain identities
involving 1-functions and others involving binomial
coefficieats.

I managed to find the S -identities corresponding
to certain well-known identities in binomial coefficients.
Several turned out to be particular cases of the identity

U((2. ~ I) U(-)uu-k r-u s-u t-u r+s+t-u-k

9r~r-k s s-k tgt -k

s+t-k t+r-k rs -k
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The proof of this and the deduction from it of several
results for 9 functions and for binomial coefficients
(the last weil-known) are given in Appendix 2, which
has been accepted for publication in the Arrerican
Mathematical Monthly.

There remains the question of when an identity
involving binomial coefficients can be generalised to
one in 9-functions. (The converse question is of
course trivial). Answers may well be either trivial
or unobtainable, but it is just possible that there may
be sc.e more significant results obtainable.

An example of a well-known identity which does
not generalise is

tn- E:/+F

Taking n - 2, I have proved that there are no indicesA1,A2,X3 such that

2 r2k-it (-X t) 2 4 ik+t 9 2-_9k(2-i)
92k+t +2 iWO - ik+i +t-1 S (2- ) (k+l)

10
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Stacks

3. If we put k - 1 and let E,t -0 o in the
identity (2.1) of section 2, we have

x u S-1u u-i r-u r 9 r-l,u

an identity which can be proved quite simply directly.
Attempts to interpret this in combinatorial terms led
to a study of structures which I call "staclo". An
n-stack is an arrangement of n nodes in rows such that
no row overlaps the one below it, thus:-

I have found the generating functions for

Sr (brt,n), the number of stacks with n nodes, r rows,

t nodes in the top row and b in the base and for
various similar enumerative functions. In particular,

(3.1) ZS~n)Xn- xrsrr_ .
n r

11



Most of this was fairly straightforward, but a more
difficult problem was that of finding an asymptotic......I J-o-' for ~ ,n) for large n, since the form ofa ppyox-u, i.L , . A %~p . .. , ... .. ....

the generating function on the right of (3.1) does not
lend itself to the usual "circle" method of Hardy and
Ramanujan. lowever, first by manipulation of
generating functions and then by an alternative direct
"graphical" argument, I proved that

(3.2) q(n) - s(n) + s(.,l,n+l),

where s(.,1,n+1) is the number of (n+l)-stacks with a
.single node in the top row and q(n) is defined by

1 + q(n)Xn - T(1-Xk)2.

(This q(n) is different from that of §1.) From (3.2)
I could deduce that

q(n-1) < 2s(n) < q(n).

The asymptotic expansion of q(n) is known ([131 and
[211) and so we can deduce that

s(n) - 8- (33n5 )- /4 exp(21rV(n/3))1+O(n-i)"

All this work appears in Appendix 3, a paper which has
been accepted for publication by the Quarterly Journal
of Mathematics.

12



I
The reader's attention is drawn to the

"Note added at proof stage" at the end of
Appendix 3 (pp. 71,72). This refers to
information received since the end of the
contract period. It shows that, while
another author studied structures equivalent
to my unrestricted n-stacks in 19A, his

results overlap minimally with mine and his
methods not at all. There seems to be some
possibility of applications in statistical
mechanics.

13



Partitions into k parts

4, Lot pk(n) be the number of partitions of n

into just k parts and qk(n) the number into at most k

PartR. WP havo qk(n) - pk(n+k) no that aily ol if

these two functions need be studied. Again X and

k are the generating functions of Pk(n) and qk(n).

In a recent article [3] on arrangements, Collins
described the problem of determining Pk(n) and qk(n)

as "an unsolved problem in partitions". This is, of
course, nonsense, as the form of Pk(n) has been studied

at length by Sylvester [19] Glaisher [8] and several
others [9,18] including me (20]. But these papers are
fairly complicated and most text-books on enumeration
describe how to determine Pk(n) only for the first few

values of k. It seemed worthwhile to write a short
article (Appendix 4, accepted for publication by the
Mathematical Gazette) showing how quite simple and
elementary methods of partial fractions give the form of

Pk(n) as a semi-polynomial and also its asymptotic value

for large n. This is perhaps as much exposition as
research, but probably worth doing.

14



Asymptotic consequences of a reatLion between

generating functions- applcation to graph theory

5. In the previous contract year I completed a
study of the relation

(5.1) + n -G (gn O)
n-1 n (\:n-1 n1f

(which is formal if the series diverge) and determined
conditions that

(5.2) Gn e gn

as n- o, I showed that the case in which g. M 0 for

an infinite sequence of n is either trivial or can be
ignored without loss of generality. Hence we take
gn > 0 for all n > c. (It follows that Gn > 0 for all

n > c.) The chief result was that the necessary and
sufficient condition for (5.2) is that

n-1
(5.3) 5 Hs Hn-s - O( ),

where the sequence (H ) is either (G ) or (gn}  We
n n

can thus confine our investigation in any particular
case to one only of the sequences (G n and (g n,

whichever we know most about. I also found sets of
sufficient conditions on H for (5.3) to hold. These

n
results I published iu [22] and [23], of which [221 is
the more relevant here.

15



II

(5.1) occurs in the equivalent form

c F 0n  f(5.4) 1 + .7 -7 x - exp
1 -+ X

in the enumerative theory of graphs, where f ni the

number of connected graphs on n labelled nodes which

have a particular property and Fn is the number of

graphs on n labelled nodes each of whose connected
components has this property. We have then found
sufficient and necessary conditions that almost all
such graphs should be connected.

When he read [221, Dr R.C. Read of the University
of the West Indies wrote to me pointing out that my
result (5.3) with Hn - gn meant that the number of those
graphs on n labelled nodes which are disconnected is
small compared with the number of those which are

connected if and only if the number of those which have
just two connected components is similarly small. It
is interesting that my efforts to get useful conditions
from an asymptotic and analytic point of view should
have led to a result which had a simple interpretation
in graph theory. In Read's interpretation the "only
if" condition is obviously trivial and it ic the "if"
that is interesting. This distinction of depth
showed, as one would expect, in my own analytic
argument.

In the same letter Dr Read drew my attention to
the relationship

00 00 -t

(5 .5 ) 1 + 0 T X n " ( l X k ) n

En

16



II

(aain. formal if series and product diverge) betweent n the number of conniected graphs on n unlabelled nodes

with a particular property and T the number of graphs
n

on n uniabelled nodes each of whose connected ..ontponents
has the same property. He asked If I could cstablibh
the conditions under which

(5.6) Tn e- t n

as n-* oo. First I found that we could without loss
of generality take tn > 0 (and so Tn > 0) for all large

enough n; then (aiter considerable work) that the
necessary and sufficient condition for (5.6) is again
(5.3) with the sequence (Hn ) either [Tn or [t I.

This has the advantage that all the work on conditions
for (5.3) in [22,23] applies without more ado. My
proofs and results appear in Appendix 5 which has been
accepted for publication in the Journal of the London
Mathematical Society. The new result can be
interpreted in terms of graphs exactly as Read
interpreted my earlier one.

Read remarks that results about unlabelled graphs
are usually more interesting than those about labelled
graphs but also much more difficult to obtain. The
truth of this appeared when I tried to find applications
of my new result. In each of the sets of sufficient
conditions for (5.3) which I developed in (22,23],
there is always one which requires a reasonably steady
rate of increase by Hn (in one sense or another). It

appears that, in the unlabelled graph case, it may
sometimes be more troublesome to prove that this
condition is satisfied (though it is very plausible)
than that the apparently more stringent conditions
are. Instead of taking this any further, however,
at this stage, I turned my attention to a more general
group of problems which I describe in the next section.

17



Abymptotic enumerative problems in graph theory

6. 1 have not worked out fully any of the results
(which arc in any case preliminary) described in thip
section. In particular, I have not constructed
rigorous proofs nor written them out. One can never
be ab~ulutely suro that onc is right until thim has
been done and this section should be read with this
caution in mind. None the less the ideas seem
interesting enough to be worth reporting.

Towards the end of the contracL period the work
described in §5 led me to consider the problem of
relating Fa f ,T and tn when n is large. As stated

in §5, I have already found ([22] and Appendix 5 of
this report) necessary and sufficient conditions that
Fn r fn and that Tp V t n i but I have now found that

(6.1) Tn -tn + T1 tn- 1 + T2 tn-2 +

We might hope that this would give us an asymptotic
expansion of Tn for large n in terms of tn 'tn-1.. Y

if the latter are in descending order of magnitude.
This is only true if certain conditions are satisfied.
The succeeding terms in the expansion do initially
get smaller but this may not persist. The later
terms are not all so simple in form and there are a
large number of them. The point that the first Lerm
of an expansion i3 not an asymptotic approximation
merely because the second term is of lower order, but
only if the sum of all the other terms is of lower
order, was made by Ford and Ublenbeck [7], but in their
examples the result was in fact true; their remark was

18



just a correct statement of what constitutes rigorous
proof. In mine, I can produce a quite qimple
counter-example which shows that wc must aatify the
more stringent condition or our result may An actual
fact be false,

While (6.1) is interesting and attractively simple,
it is useful to deduce from it that

(6.2) t n - Tn +*-'Tn.1 +0<2 Tn2 +..

since we are more likely to know Tn than tn .  I seem

able to find siwilar results for Fn and fn? viz,

Fn " f + (n )Flfn_ + (n)F 2 fn_2 +

and so on.

We need next an asymptotic relationship between
F. and T.. This depends on a famouzi theorem due to

Polya [163, developed and applied by HarLry [10],
de Bruijn (Chapter 5 of [11) and others; in its general
form it cannot be stated as simp.!y as (6.1) and (6.2),
but in spvcial cabps it can bo i icd very effectively.
The interest o" all these relationships lies in the fact
that Fn is usually the easiest number to calculate while

fn,Tn and t. are, increasingly in that order, the more

interesting both theoretically and for applications.

If we take as a particular exatuple the simple form
of graph in which every pair of nodes is, or is not,
joined by just one undirected edge (and there are no

19
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I

slings), we have F. - 2 N  and so G. - 2N/n . , where

N - n(n-l)/2. It secms clear that our conditions are
satisfied and so we get an asymptotic expansion for
tn. I used Polya's theorem to find an asymptotic

(6.3) T n - n + lp1(U)Gn 1 + U2 (n)G_ 2 +

where V k(n) is a polynomial of degree k in n which

can be readily calculated by my method for
k - 1,2,3,4,.... The result n'Tn u 2N was already

known [7) and a few weeks ago a paper by Oberacheop
(15] appeared which gave the result

n:Tn M 2N(i+01.(n)2-+0 2 (n)2-2n+o(n52 -5n/2

where Ok(n) is a polynomial of degree 2k. (I can show

that Ok(n) is divisible by *kn ' My own corresponding

error term deduced from (6.3) would be O(n 62 "n) and I
have not yet discovered why Oberachelp gives the larger
one). Using the expansion of Tn given by (6.3) in
(6.2), we have an asymptotic expansion of tn.

If we restrict each graph to have just p edges,
we may write F f ,T t for the numbersap up npt upcorresponding to FntfnTn~tn. It looks as if more

complicated results of the same kind should be
obtainable for Fnp,fnp,Tnptnp, but I have not gone
far into this yet.

°20



In particular, however, if we take the same example

as above we hav- F tN) gd 4 t Js known[7] thatnp kP]
fnp( Fnp provided that p > n log n, and that Polya has

proved that

(6..) nTnv F
np np

provided Ip-iNI- O(n). From this it can be deduced
that n:t a, F np Oberschelp has proved (6.4) under

the wider condition that p-4N1 < Cn3 /2 for suitable
C. I seem to be able to do more, viz. to find an
asymptotic approximation for the difference n:Tnp - Fnp

and that under the still wider condition that

Ip-JNI - O(n 2 -  ) for any positive £. But all this
requires much more work.

The previous investigations which gave firt
approximations to the particular examples of fnpt Tap

and tnp above were all undertaken because of the

relevance of the results to statistical mechanics
[4-7,17] and chemistry [16]. The theory of graphs,
although heavily investigated as a fascinating branch
of pure mathematics, has many applications [1]. We
might expect that the asymptotic theory is likely to
find its applications mainly in mathematical physics
and expecially in statistical mechanics. Since
physicists have shown an interest in the subject, it
would seem useful to develop a coherent theory, as
general and complete as possible. There appear also
to be applications [11] to the theory of logical
relations.

21
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Appendix 1

Rotatable Partitions

by E.M. Wright t

[To be published in the Journal of
the 1ondon Mathematical Society]

1. In what follows all small latin letters denote

non-negative rational integers or functions all of whose

values are non-negative integers. By a d-dimensional

b-restricted partition Y of n, where d > 0, b > 0, we

understand a solution of the equation.

(1) n - 211 y(xl x2,...Pxd),

where every y < b and

whenever xi K xf for all i, We may take b - co when we

tThe research reported herein has been sponsored by

the European Research Office, United States Army.

24



Shall Call the partition Unrestricted. The Only other
case of imaportance is that in which b - 1; such a

partition we call a unit parti-tion (more correctly, a
partition into units). We write q(d,b;n) for the numaber
of d-dimensional b-restricted partitions of n. If we
sum with respect to x d.0-1 we see that

(2) q(d+1,1;n) -q(d,cx;n).

25



2. We require the following lema.

Lemma. Let p be a prime number, d - Pt and T be a

transformation such that T is the identity. If S is a

finite set closed under T, then the number of members of

S not invariant under T is divisible by p.

Corresponding to every member s of S, we construct

the set T-(s), viz.

2 c-I.
sTs,T s,...,T s,

where c is the least positive integer such that TC -s.

Then c.< d; let us write d -uc + v, where O v < c.

We have s - T ds - Tv(Tc)Us - TVs and so v - 0, by the

definition of c. Hence cid.

Clearly ZI(s) C S. Again, if s' C Z-(s), then

Z (s') - U(s); hence any two sets U-(s 1 ) and T(s 2 )

either coincide or are disjoint. We have then all the

members of S arranged in disjoint sets D(S ), --(s2) ...

If s is invariant under T, then c - 1. For all

other s we have c > 1 and so, if d - pt, plc. Hence all

the s not invariant under T are arranged in disjoint sets

and the number of members in each of these sets is a

26



multiple of p. Hence the total number of s not invariant
I

under T is a multiple of p.

We now take the set 6 to be the set of d-dimensional

b-restricted partitions Y of n, and T to be the

transformation Y' - TY such that

y'(x lX 2,...,xd) - Y(x 2 ,x3P...PXd,Xl).

The conditions of the lemma are clearly satisfied. Let

us call any partition Y which is invariant under T, i.e.

one for which

Y(Xl,x 2,...,xd) - y(x 2 ,x3 # ...,xd,x1 )

for all sets Yl,X 2,...,Xd, a rotatable partition and let

q'(d,b;n) denote the number of d-dimensional b-restricted

rotatable partitions of n. Then our lemma gives us at

once the following theorem.

Theorem. If d - p t, then

q(d,b;n) -- q'(d,b,n) (mod p).

We observe that nothing like (2) is true for the q'.
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3. it has long been conjectured that the

generating function foi q(d,oo;n), viz.

00

Qd Qd(X) 1 + 2q(d,m;n)X n

is equal to

00 k

Rd WdX T 7 (1- X k-1/ -1 +4 r(d, n)Xn,k-i

where d-_2' takes the value 1 for k - 1 and otherwise

denotes the usual binomial coefficient. For d - 1, this

conjecture is true and its almost intuitive proof is due

to Euler [4]. Macmahon [5] proved the conjecture true

for d - 2, but neither his proof nor that of Chaundy [2]

is at all simple. Attempts to produce a direct (i.e.

combinatorial) proof for d - 2 have not got very far.

Cheema and Gordon [3] found a combinatorial proof that

00 OD

(1 - x -  FT( - k)2. 1 + Z: q(2,2;n)Xn,
k-2 n-i

but it is not trivial and its further extension looks
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II
difficult. Recently [1] the conjecture has been

disproved for 4 - 3, essentially by showing that

q(d,oo;6) + r(d,6), The authors of III do not give thc

details of the calculation (which they describe as "more

tedious"), but its nature Is clear. They have also used

a computer to calculate q(d,l;n) for d < 8 and a range

of n.

The theorem of §2 enables me to give in §5 a very

simple proof of the falsehood of the conjecture for d - p

or d - p - 1. This theorem might also provide a test

for any other conjecture. When d is a prime power, the

theorem also provides a simple check of the accuracy of

computed va2ues of q(d,L;n) and q(d,w ;n) for fairly

small values of n.

It is interesting to learn that %3(X) is not the

generating function of q(3,co;n) and it would be of some

interest to have a more plausible conjecture as to what

is the correct generating function. But the case of

q(2,oo;n) shows that it is unlikely that any such

conjecture would help us greatly to prove what is the

generating function. In that case, our knowledge of

the generating function has not enabled us to produce

a simple proof or a direct, enumerative proof.
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ANW,

In {61 I showed that the generating function for the

number cf solutions of (1) for d - 3 subject to

y(0,0,0) <a, y(1,0,0) b, y(0,1,0) 4 c (b¢a, c¢a)

and

y(u,v,O) U U (uiv:2)

is

b c

0 b-u c -a+u+, b-ucv ,

where

t

St s-la 1 - Xs)-Z.

Here '(u,v) is a polynomial in X whose term of lowest

degree in X is of degree J(u-v) + iuWv) - 1. The

4(u,v) can in theory be calculated from (increasingly

elaborate) recurrence relations. In particular,

Cl(u,v) - -4(v,u) and

o (o,o,o) - 1, c4(O,1) - .4f,o) - -X, o4(o,V) - o (v> 2).

I am investigating the next step, in which we allow

y(1,1,O) to have positive values, but the work is not

simple.

30



4. The valut of q'(d,l;n) for the smaller valuesof d and n cMin be readily calculated by efnumerkting the
rotatable unit Partitio" This Is particuiarly easy
when d is a prime, the most interesting case from our
point of view.

The values of q'(d,co;n) can be deduced from those
for q'(d, I;n') for n' - 1,2,.,.,n, since a rotatable
unbounded partition of n can be dissected into suitable

unit partitions of n', where n Zn'.
The values are given in the tables. If p > 3, where

p is a prime, we have
q'lP,1;1) - q'(P,1;p~l) - 1. q'(P,1;2p+l) - j(p+1),

q'(p,1;n)- 0 (2(n~p, p+2.<n!2p, 2 p+2 <n<3p),

q'(p,1;3p+l) - '(p2_1) + 1.

Also

q'(p,oo;n) - 1 (1<n <p),

q'(p,cu;n) - 2 (P+ln!2p),

q'(p,,u ; 2p+1) (p+5),

q'(p,oo;n) - (p 7) ( 2 p+2n<3p),

q'(r,co ;3p+1) 1- (d+l)(d+3) + 3.
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5. Here we compare r(d,n) and

q(d~w ;n) - q(d+l,w ;n) for two classes of d. We take p

an odd prime. All cougruences are to modulus5 p. We

write SI(X) M S,(X) to denote that

n-0 n-2p+I

First let us take d - p. From §4, we have:

q(p,o ;n) a q'(p,oo;n) - ( 2 (p+1(4n<2p).

Hence

0,

Qp - 1 + 2 q(p, o ;n) (1 - X)-(1 + xP+I).
n-1

Again

KPk 2  10 (k it1)
1 (k a 1)

and

(1 - - 1 - xP t .
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Hence

R - 1 xV k-1)

P k-I

-^ (1 - x -1( X2 )-p(i -p -

,(I- -)1( _-~)i(i X+

(- W + X 2 p)(1 + Xp V Q +~

and so

r (p p2p) * q(p, o; 2p).

Next let d - p - 1. We remark that

q(d,oD ; n) -q(p, 1; n) and that

q(p,1;n) mq'(p,1;n) -f1 (n-1, p+1),

0 (2<,n<p, p+2,<n<2p),

so that

-d QP-1 'I-1 + x + p1

We have

OD p-i k-

33



It is easily seen that

- ~ ( [0 2)

We have then

(1+ X) (I + X2p) C, + xp~1 ) (1 -p

V '(I + X) (1 +, xp+l - X + &

,Vi x + xp+l - xp+3 + X2p

and so

r(p-1,n) q(p-1,oo;n) (n3 p+3,2p).
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Table of (d,,1;ln)

n\ d  3 4 5 7 8 9 11

1 1 1 1 1 1 1
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0
5 0 1 0 0 0 0 0
6 0 0 1 0 0 0 0
7 2 1 0 0 0 0 0
8 1 0 0 1 0 0 0
9 0 2 0 0 1 0 0
10 2 0 0 0 0 1 0
11 1 2 3 0 0 0 0
12 0 0 0 0 0 0 1
13 4 2 .0 0 1 0 0
14 3 0 0 0 0 0 0
15 0 4 0 4 0 0 0
16 5 1 4 0 0 0 0
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Table of '(d, 0;n)

3 4 5 7 8 9 1

.4 2
1 ]1 1 1 1 1 1 1

2 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 2 1 1 1 1 1 1

5 2 2 1 1 1 1 1

6 2 2 2 1 1 1 1

7 4 3 2 1 1 1 1

8 6 3 2 2 1 1 1

9 6 5 2 2 2 1 1

10 8 6 2 2 2 2 1

11 11 8 5 2 2 2 1
12 13 9 6 2 2 2 2

13 17 11 6 2 3 2 2

14 24 14 6 2 3 2 2

15 28 19 6 6 3 2 2

16 36 22 10 7 3 2 2
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Appendix 2

An identity and applications

by E.M. Wrightt

[To be published in the American
Mathematical Monthly]

1. In what follows all small latir letters

denote integers positive, negative or zero. XY

are any complex numbers such that lXI < 1 I YJ < 1.

We write

a

o (a<o), o - T- (I-XU)-i (a>O).
U-1

We use T- to denote summation over- all u and
U u

summation over all u <r+s+t-k. In every case all

but a finite number of the terms vanish, so that

the sum is a finite one. We shall prove

tThe research reported herein has been sponsored
by the European Research Office, United States Army.
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00 t Tnerm xu(uk)i u -k r-u & a _u t-u

s+t-k t+r-k r4s-k Z U r+s+t-k-u

;r r-k 9a 9s-k St t-k

We first prove two letomas.

Lemmal1: If V >O, then

w

1W T7 a +Yxj) - I x~x1/ s1 xsw-x I~
i-. x

The result is trivial for w - 1. 'We can

establish an induction with respect to w, provided

we can show that

(I+i 1 X x(x+1)/2 9 -
x x-

-X xw+1 ) EI Xx(x+l)/'2 S y~l x
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The coefficient of yx on the loft-hand side is

xx(x+l)/A S x + Xw+l+x(x-)/2 l

. x(x+l)/2 Sx+s _ [(-X w +I- X ) + XW+l-x(1-x )xwx x-1 +1-

= xx(x+1)/2 IxSw+i ((x(IX)w + )

which is the coefficient of Y' on the right-hand side.

Lemma 2:

(2) v "- E (_,)x Xxv+x(x+1)/2 xjw-x

This is trivial if w ( 0 or if w > 0, v + w < 0.

We suppose then that w > 0 and v + w >, 0. We put

Y - -Xv in Lemma 1 and use the result in (2). We

find that we have to prove that

W

(3) v " iv+w-x+v) (w > o, v + w >,o).
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thije .lert-hand side vanishes; Also
I ~-v-~w and so one of the lActars In the pro-ducton the right vanishes. Xf v ; 0, (3) is immediate

fro& the defi.nition of .

BY Lemma 2, we have

P---'+-k r~~ -k-Ul(IZ.tU)zzl 
9z Vr~s-k-z

2:(t. .I()yXy(tk)+y(y+)/%
t- s+t -kS 

8-Y,

If we use these in (1), We find that It is enough to
prove that

U z u u-k ru9uzr+--

y -y
where
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Sul'u-k)+z(t-u)+z(z+l)/n& - u(u-k-z)'tztt-,(zi-)/2

and

-xt+y(t-kc)+x(x+)/2+y(y+l)/2

-t(x+y)+y(y-k-x-y)+(x+y)(x+y+l)/2

Selecting those terms on the right for which xc+y-z,

we see that it is enough to prove that

(4) 1 z~r+s-z-k : Xu (u-kz)~ uu-k I r-u 3o-u
U

r 9s-k1: y~-k-)Sy 3z-ytr-k-z+y s-y

for every z.

Again, by Lemmaa 2,
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u r-u rv -v

e-U u-k e-k E- w u-k-w'w

y - v~ v~~~)2 V Z-Y-V

8-y r-z-k+y

rqs-z-k E -*Xw 9r-z-k+y-w

We substitute from these in (4). It is then enough

to prove that the coefficient of

(-1) V~ wz +v(v+1) /2 +w(w +1)/2~ 3 ~-zkSra

on each side is the sa-me, i~e. to prove that

xI ul (u-k-z+v-w)S Isv~u--
u

- yYkz~-~ Z-- r r-z-k-w+y
y
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If we put y -+z+w-v-u in th, :us on the right-hand

side, it becomes identical with that on the left-hand

side. Thta cikplotoa tho pro oT our thoori.
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I
2. If a -0c , then

cx,

a -
U-1

the generating function of the number of partitions

of n into any number of parts. If we let t--> O

in (1) we have the idontity

(5) tr K-k u X(U-k)uukrusu ; t
r~s u -k ru su r r-k s s-k•

If we let s --> oo in this, we have the further

identity

(6) -xu(u-k) uu Uk ru rrk

This last identity can be proved independently by

induction with respect to r. It has an interpretation

in terms of partition theory, but I have not yet found

a direct combinatorial proof.

We remark that, if a >O, b > O, then
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lim 3b(a+b):
X -0l -Ya +ba.b.

where 0:- 1. Let us wrxte c - mrin(O,k) and

d - max(r,s,t). If c < d, we have

(7) (r+s+t-u-k)!
u-c u! (u-k): (r-u), (s-u). (t-u)!

- (s+t-k): (t+r-k)!:(r+s-k)'

r: ('-k) :s: (s-k) :t: (t-k)!

if we lot X I~ 1In (1). Similarly we can deduce

from (5) that

min(r,s)I 
rs-)>1a(Ok 1:uk!ru!su. r (rk:s-k) !

Recently Graham and Riordan [1] have shown that

the Eolution of the recurrence relation
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I
in termz of the undeterminod v isvv

m
2v+1 (a v) (.Lvv (m<n).(9) Wnm - m +v+1' + m - v

An alternative proof to theirs would bp to substitute

from (9) in (8) and then seek to prove equal the

coefficients of vv on either side of the result.

What is required readily reduces to the identity (7)

with k - 1.

In the same way, tae solution of the recurrence

relation

M

nm -O ' x(m-v) (m-v+1) 2m n+v-2m !)mv/§n+v

is

m +1

v-O Sn+vn-l-v
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I
and the verification of this reduces to 

the identity

(1) with - I.

,gain let us put r - s - p and k - 0 in (1) and

lot X -- > 1. We have

UP t 2p U) p

which is, of course, a well-known 
identity.
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Appendix 3

Stacks

by E.M. Wrightt

[To be published in the Quarterly
Journal of Mathematics]

1. In what follows all small latin letters denote

non-negative integers or functions all of whose values

are such integers. X and Y are complex numbers such

that 1XI < 1, IYJ < 1 and sometimes Y--> 1. Under

these conditions all the questions of convergence which

arise are trivial and we ignore them.

An n-stack is a solution of the equation

n - z(x,y),
x,yl

in which every z is 0 or 1, z(1.1) - 1,

tThe research reported hirein has been sponsored

by the European Research Office, United States Army.
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z(X,yl ) --I@z(x,y) Y4 (1 yyi )

and

z (X 1y) .=z(x2,y) -1, Xl< X 2  __ z(xy) -1 ('X Xx2)

The stack may be represented by n nodes arranged at

the points whose coordinates are x,y as in the figure

(ignore the vertical lines, whether broken or unbroken).

We write s(n) for the number of n-stacks and sr (n) for

the number of n-stacks with just r rows. Our object

here is to study s r(n) and s(n) and a number of

related enumerative functions and to find their

generating functions and certain relations between

them. Finally we obtain asymptotic approximations to

Sr(n) and s(n).

We may dissect an n-stack with r rows by drawing

a line parallel to the y-axis just to the left of the

left-hand node in the top layer (the left-hand

unbroken line in the figure). The stack is then

dissected into two parts. If the left hand part

contains n1 nodes, it may be read as the graph of a
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r
'I

'4

M

* I
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I * I
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I I
I I
I I
I I
I I
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partition of n1 into not more than r-1 parts. We

write pr (l)for the number of such partitions and

take Pri1(O) - 1, p rl(-n) - 0 (nO). The right

hand part is the graph of a partition of n2 into just

r parts, where n2 - n-nlor; the number of such

partitions is readily seen to be Pr(n 2 -r). (Remove

one node from each part; there remains a partition of

n2-r into at most r parts.) The generating function

of Pr(n) is well known to be

rr0

r r(X) _ T7 (i-xkrl - ZP (l)xn
k-I O

(see, for example, [1]). We write go " 1 and

S-a " 0 (a>O).

We have then

SZr(n) Pr_ (n )pr(n2-r)nI +n2 Dn

and so the generating function of s (n) is
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0000-r XFg () *Z - n P DIr

(1) E: (n) Lr .("1 pr~ln1PrX ;J

r n3-r

F Hence the generating function Of sBW is

OD) OD OD 00

(2) Z:B'n~X E1 Zi,-r (a~) -:x

u-i r-i n-rr-
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r1

2.oo Write ar(bt,) for the number of n-stacks

with r rows, b nodes in the base or bottom row and t

nodes in the top row. We write sr (.,t,n) for the

number of n-stacks with r rows and t nodes in the top.

row; similarly sr(b,.,n) is the number with r rows and

b nodes in the base. Again sr(., :t,n) is the number

with r rows and not less than t nodes in the top row.

Finally, if the number of rows is unrestricted, we omit

the suffix r. Thus

(3) Sr(b,.,n) - Esr(b,t,n),s(b,.,n) - -s (b,.,n)
CA rXt

and so on.

An n-stack with r rows, base b and top t may be

dissected into three parts L, M, R as in the figure by

drawing the two unbroken vertical lines, one just to

the left of the left-hand node of the top layer and one

to the right of the right-hand node of the top layer.

(The broken lines should be ignored). The left hand

part L is the graph of a partition of n1 (say) into not

more than r -1 parts of which the greatest is b1 (say).
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I!

We write p r-I(bl~nl) for the number of such partitionn;m

it iti well known [31 that

MY)I - bi-z X(-xl)

The middle part M contains just rt nodes. The right

hand part R is a partition of n2 into not more than

r-1 parts of which the greatest is b, where

a -o zl+n2+rt and b - b 1+b2 +to We have then

Mr(b,t,n) - -- Pr-1 (b1, nI) pr-I(b2, 2)
bl1+b2o-b-ot n,+n2-n-rt;

and so

(4) Sr t ;il,Y) - _r (b,t,n) ybxn

b,n

M( .Xrtyt l( X, M Y) 12

r-

xry' (1 1 r)-2 .

56
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We write

Sr(XY) - I r(b..#n)Yb x
1~ b, n)1

anad

S(xy) s 1I(b,.,n) ybXn.
b, n>,

By (3) and (4)

(5) Sr (x,y) E Zsr(t~xiy)

r- 1
- Yxr(l..yXr)4 1(YX k 2

k-i

and

(6) SMY E s (X, Y)
r~l
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I
Since s(n) is the number of n-stacks, with no

restriction un base, top or number of rows, we have

s(n) - Zs(b,.,n)
b

and so

Z-s(n)Xn - Zs(b,.,n)X - S(X,1).
n b,n

Using (5) and (6) we see that this is in agreement

with (2).
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3. By the definitions, we have

nmu

- Xrug2

by (4). Hence

OD 
00

n-t U-tr-1 r

and

00 co
(7) Z~(,t,n )),m - jrt Ai Fxxt)nat r-I 1 -
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so that i~
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4. L~et us writA

- ~ ~ -c,()- ii5 ?.n)X,b OX) -n-b

so that

(9) S(XY) E b ~Y.

By (5)

Sr (p)1~X 2 
-Sr (XYX)

and so, sum~ming over r, we have

S(X,Y)(1-Y%)2  YX(1.-yX) + S(X,Yx).

Substitus-ing from (9) and equL.-ng the coefficients of
Y we have
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-I X41 '2 " X2 (1+X)S 2
I

(10) (b 2X%- 2 (b>3).

From this we can easily calculate that

)3 X3 3 ( 1 +X ) 2 ' ,4 . X4 4 (1+x)(i+2X+X 
3 )

WS - x 5 5 ( 1+x ) (1+3X+2x3 +x4 +x5 ).

Alternatively we may proceed as follows. We

remark that s(b,*,b) - 1, If n>b, we may remove the

base b from the stack. We are then left with a stack

with base c (say) which may have occupied any one 
of

b-c+1 positions in the original stack. Hence

b

s(b,.,n) - Z(b-c,1)s(c,.,n-b) (n>b),
c-1

which leads at once to

b

W - xb (1 + L_(b-c )tJ ) (b>1).
C-i

From this (10) follows.
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S. From (1) w can find an expression for a (ni)
r

which gives us very easily the behaviour of sr(n) for

fixed r and large n. The method is closely related

to that of [4]. We note that

r r-I
r-i(-xv) T 11-X v)

r ~r - v- 1V-1

r

v-i1. f(i-fX) (r,v)

where the last product is taken over all primitive

v-th roots e of unity and /\(r,v) - [r/v]+[(r-i)/v].

Hence by the elementary technique of partial fractions,

we have

r X(r v)
r Zr . i" A(r,v,p,t)(1-X)-t

v-1 (v) t-1

and so, by (1),

r

Sr (n) - Z-P(r,v,n)
v-1
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where

Mr,v)

?(v) t-i :'~)

(r, v)

- XI B(r,v,t,n)nt -

t-I

and

B(r,v,t,n) - ZC(rvCt).
e(v)

Hence B(r,vt,n) depends on the residue of n (mod v)

but not otherwise on n, We say that P(rv,n) is a

-emi Plcnozial la L& wl egree A(r,v)-I and to

modulus v.

We observe that A(r,l) - 2r-1, A(r,2) - r-1 and

A(r,v) < 2r/3 for v > 2. For large n and fixed r we

have then

ar ka)- k,(r,,,n) + 0(nr-2

where P(r,l,n) is a polynomial of degree 2r-2 in n.
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Usinig a method simzilar to that of [4], we can evaluate

the leading coefficients in P(r,l,n) and we find thot

I (ir] (fl+R) 2r-2t r-

where r>1, R - 1rr2,-- a nd

2 72 3 259200
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6. Wc cannot deduce the asymptotic behaviour

of s(n) directly from a knowledge of its generating

function, at least in the form given in (2). But the

results of4f3 enable us to find what we want. First

we remark that

00

(1-Y)F(X,Y) - za( r~l r -
r-1 r -g--Y

and so

00

(11) lim (1-Y)F(X,Y) --(gr- 1i - r-2 r-1 )

Y->I r-1

2

-i 9r r-I 9r -0lr - -lr -oo

where

00 a)

( 1 2 ) 2 k = 1 -k-1 n-O

(say).
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Again we, have

rXY Dr-2 r-

r

-XF(X,y)_.(+X)F(XXy)+F(XX 2y) 
'

and so

X(l-Y)F(X,Y).(1+X)F(XXY)+F(XX~y

Letting Y --> 1, we have

co 0 OD>I~qn)X n- 0 s 1(n)X+Fs(> 2 )Xn an-0 0m -

by (7), (8) and (11). Henve
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that is

(13) q(n) - s(n)+s(n--)-a(., 2,n+l) n o

Any (n+l)-stack with a top of one node can be

converted into a unique n-stack by removing that one

node. The reverse process is not unique. Hence

s(n) < s;(.,1,n+l) 4 s(n+1),

the latter inequality being trivial. Hence, by (13),

2s(n) 4 q(n) < 2s(n+1).

From this, we have

(14) jq(n-1) < s(n) < jq(n).

If we wrJ+e

O(n) - 8-1(33n5)i e xp(2rV(n/3 ) ),

we have, as a --> oo,
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q -n 20(n)(1 +O(un4 ))

by (2]. Clearly

and so, by (14),

s(n) - ()1+~-)

as a -> co.* This gives the asymptotic approximation

to s(n).
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7 The essential relation (13) can be

0tab'ished by a wiae dir'ect &Iudy Of the n-stack,

This has some interest in itself. We remark first

that o " p(n)X n , where p(n) is the number of
a

unrestricted partitions of n and p(O) - 1. Hence,

by (12), we have

q(n) - >- p(nI)P(:i2 ).n I +U 2-n

If we take the graph of any partition of nI and the

.graph of any partition of n2 and ar:ange them back-to-

back we have an n-stack, where n - nl+n2  This is

the reverse process to the dissection of a stack in

§1. A little consideration shows that any n-stack

with top t can be constructed thus in just t+1 ways

though, of course, with different ul,n 2 . For, in the

figure, we may separate the n-stack by any one of the

vertical straight lines (broken or unbroken) into two

partition graphs. Hence

(15) q(n) - Z-(t+l)s(.,t,n).
t0

70



We consider again an n-stack with top t. We

can place a single node above the top row in just

t ways to form an (n+1)-stack with top 1, Nor can any

one of these (n+l)-stacks be constructed in this way

from any other n.stacks. Hence

(16) s(.,1,n+1) - Zts(.,t,n).

But trivially

(17) s -

and (13) follows at once from (15), (16) and (17).
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Note added at proof stag. Dr A.O.L. Atkin,

to whom I had communicated my results in this

paper, drew my attention to [51, in which Auluck

considers a combinatorial structure equivalent

to the unrestricted n-stack. Auluck finds the

generating function on thp right-hand side of (2)

and the asymptotic approximation s(n) "' O(n)

but not my result about the order of the error.

The other results of the present paper do not

appear in (51 and the methods used in the two

papers differ entirely. Auluck also shows that

0o X r 2 (.1) -lxn(n+l)/2 ,

r-1 r . n-1

a result which Atkin had conjectured from results

obtained on a computer and which I can prove very

simply. Auluck also studies other combinatorial

structures on which I have recently done some work.

Again there is surprisingly little overlap, either

in methods or results and I iiope to publish further

results later.
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Appendix 4

Number of arrangements

by E.M. Wright t

[To be published in the Mathematical Gazette]

In a recent article [I] in this Gazette, Collings

discusses the number of arrangements of n railway trucks

on k sidings under a variety of conditions. Let qk(n)

be the number of ways of arranging n indistinguishable

trucks on k indistinguishable sidings or, what is the

same thing, the number of partitions of n into not more

than k parts. Let pk(n) be the number of these

arrangements which use all k sidings, that is, the number

%Jf partitions of n into exactly k parts. Collings

describes the determination of Pk(n) and qk(n) as an

unsolved problem in partition theory; this is not quite

correct.

It is convenient to write

qk(a) - 0 (n<O), qk(O) - 1, qo(n) - 0 (n>1). (1)

t The research reported herein has been sponsored by

the European Research Office, United States Army.

74



!t e ..sy to see that each arrangement of the n trucks

on the k sidings is either (i) an arrangemcnt which uses

all k sidings or (ii) one which uses not mure than k-i

sidings. Hence

qk(n) - Pk(n) + q_,(n) (n>l). (2)

Again, if we consider an arrangement of n trucks using

all k sidings and remove a truck from each siding, we

are left with n-k trucks on not more than k sidings;

the reverse process holds alo. Hence

Pk(n) - qk(n-k). (3)

This reduces the determination of pk(n) to that of

qk ( n ) .

Using (3) in (2), we have

qk(n) - qk(n-k) + qk-1 (n) (k i, n>41). (4)

Now let us write

00
Qk - Qk( x ) " L--'k n) X n  (k>,0, IXl<l). (5)

n-O

Multiplying (4) throughout by X n and surnxing over n, we

have
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Qk - XkQk + Qk-11 Qk(I - X ) Qk-1 (kol) (6)

and so

k

Qk- (T - x-) - 1 (7)

since QO - 1. This result is due to Euler [2].

We ignored the question of the convergence of the

series in (5). If we regard Qk as defined by (7), it

is trivial that Qk can be expanded in a power series

convergent forjXl< 1. Again this Qk clearly satisfies

(6) and so the coeffic.ents in the power series satisfy

conditions corresponding to (1) and (4) and can be

identified with the qk(n).

While in theory qk(n) can be calculated from (5)

and (7), or indeed from (1) and (4), for any k and n,

this process does not lead to a simple formula like those

found by Collings [11 for the number of arrangements

under other conditions.

The form of qk(n) has been studied by Sylvester [6),

Glaisher [3], Rieger [5] and in [41 and [7]. Sylvester's

and Glaisher's papers are lengthy and detailed. However
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w,? v.n find out something about qk(n) by ppl yng the

wel-know n eiumuntary technique of portial. fractions to

Qk'

We must first find thu linear factors of Qk- We

have

I - xh - ITO - TX),

where T runs through all h-th roots of unity, i.e. all

values of r such that h 1, Let e bt! a primitive

h-th root of unity, i.e. h .4 1 and pt 4 I for I < t < h.

Then e is an hu-th root of unity for all positive

integral u and so the factor 1 - pX occurs just jk/h]

times in Q. Here [F] denotes the greatust integer

less tha' or equal to F. Hence

k k

- T - X .T- F T 1
s-i h-i e(h)

where the last product is over all primitive h-th roots

of unity.

If we split k into partial fractions in the usual

way, we have
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A(k.hp.ti(il -xN-t
h-1 e(h) t i

and so

k

q~(n) h-i

where

[k/bJ

Z:e >1 (k,h,e,v)nv-l
(h) v-1

[k/h]

E .. C(k,ho,n)nv-i

and

C(k,h,v,n) B~~~~
(h)
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Since - , we see that C(k,±,v,n4fh) - C(kh,v,n) and

so C(k,h,v,n) dcpcnds on thc rcsiduc of n (mod h) but not

otherwise on n. Hence, for large n, C(k,h,v,n) is

bounded and R(k,h,n) - O(n[k/h]-I. Hence from (9) we can

deduce that

qk(n) - R(k,l,n) + O(n[LkI-1) (10)

If h - 1, the sole value of e is I and so

k

R(k,l,n) - -A(k,1,1,t) (n+t-1).
t-1 nT(t-T)T

nk-i

- A(k,1,1,k) nT . + o(n k-).

If we multiply (8) throughout by (1 - X)k and let X 1,

we have

A(k,1,1,k) lim (1 - X)k Qk(X) -/(k.).
x ->l

Hence, for large n,

•. n k-1 k-2qk(n) K . + on (11)
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Thus by quite elementary reatoning we have learnt

quite a lot about qk(n), especially (9), (10) and (11).

The last result can be improved substantially with enough

labour; in fact (see [7])

(n4I) (k+1) (2k+) (n+)k 3  k-5qk (n) -+ n
- 144(k-1)3k T + o(k-5)

if k > 7 and K - k(k+l). For smaller values of k the

exact form of q,(n) can be readily determined by partial

fractions. Detailed results are given in [4].
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Appendix 5

A relationship between two sequences III

by E.M. Wrightt

[To be published in the Journal of
the London Mathematical Society]

1. In an earlier paper [2] we studied two sequences

[gn, [G n whose relationship was defined by

00 LXo

(1.1) 1 + E- GnXn - expnX
n-1 n-i 1

(to be interpreted formally if the series diverge for all

non-zero X) or by the equivalent

n-1

(1.2) aGn =ngn + L_:sgsG n s .
s-I

(1.1) and (1.2) holds good when n!gn is the number of

tThe research reported herein has been spc.sored
by the European Research Office, United States Army.
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co-aintcd graphs on a labelled nodes with a particular

property and n!G a is the number of graphs on n labelled

nodes each of whose connected components has that

property. See, for example, Gilbert [1].

In 12] I took gn , 0 and stlidied conditions under

which

(1.3) Gn  N gn

as n --> co. We found that, without loss of generality,

we could assume that gn > 0 for all sufficiently large n.

The divergence of the power series in (1.1) for all non-

zero X was a necessary condition for (1.3). An example

showed that, even when combined with a condition of

reasonably steady increase of gn, this was not

sufficient. A necessary and sufficient condition for

(1.3) was that

n-1

(1.4) E HsH n-s o(H n)

as n-- oo, where the sequence (H n  is either [G n or

(gn .  The advantage of (1l4) is that we need information
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about only one of the sequences (G., {gu . In [2] 1

found two sets of sufficient conditions on the rate of

growth of Hn for (1.4) to be true. In [31 I studied a

further necessary condition (given that Hn satisfies a

condition of fairly smooth growth) and showed that it was

not sufficient. The gap between these necessary and

sufficient conditions was now not great.

When Dr R.C. Read read [21 he wrote to ask me

whether I could find conditions that

(1.5) Tn  ev t n

as a --> o., where

O 1 00 k -tk

(1.6) 1 + EZT a nx- - (1 - x
n-i k-1

(again interpreted formally if the series and product

diverge). Here tn is the number of connected graphs on

n unlabelled nodes with a particular property and Tn is

the number of graphs on iz unlabelled nodes, each of whose

connected components has that property. I show here that
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the necessary and sufficient conditions on tTnJ and

(tn ) are precisely the same as those on (0n) and (gn].

This means that all the results about (1.4) in [2,3]

apply to the new problem.

Dr Read pointed out that, if we take H. - gn, (1.4)

has the following meaning. The number of graphs on n

labelled nodes which are disconnected .s smn 11 compared

with the number which are connected if, and only if, the

number of them which have Just two connected components

is similarly small. My result here extends this

statement to the graphs on unlabelled nodes.
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2. We suppose t >.0 for all n. Differontiating

(1.5) logarithmically, we have

nTnx n  ntnXn

L 2: >nt n mn n-Enis-i x

where

(2.1) Sv6  m

Hence

OD 0/00

T+ nT X n  LSV 8 x
n-i S-i \h-i /h

and sO

n-1

(2.2) nT - nv +Tsv sT
8-I

This relation (2.2) between [T n and (v n is the same as
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(1.2) between (G and (gn. We use this f t in whiat

follows. It follows from (2.1) and (2.2) that

(2.3) tn Vn Tn.

We prove first the following theorem

Theorem 1. If T - 0 for an infinite sequence of n,__ n

then tn - 0 except when n is a multiple of some d > 1.

Let us suppose the condition satisfied. Then,

since (2.2) is equivalent to (1.2), Theorem 1 of [2)

tells us that there is a d > 1 such that vn -0 if d n.

Since t > 0 for all m, it follows from (2.1) thatm

- 0 if d n. This is our theorem.

If the condition of Theorem 1 is satisfied, but Tn

does not vanish for all n, let us take d to have its

largest possible value. (1.6) becomes

OD 00

N I dm Ml+Z'Tdm FT l7 xd 0tm1

that is
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r

OD ODI
I+ -__ dM Z

There cannot now be an infinity of zero Tdm, since

otherwise we could apply Theorem I again and, in un

obvious way, find t% contradiction to the hypothesis that

d has its largest possible value. Hence there is no

loss of generality If we suppose Ta > 0 for all

sufficiently large n. We shall therefore suppose that

(2.4) t n > 0 (nc)

since otherwise Tn r. tn is clearly impossible.

In what follows we write K for a positive number,

not always the same at each occurrence, independent of n.

We use K 1 ,K2 for fixed numbers ol the sane kind.
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I
3. We prove next our main theorem.

Theorem 2. The necessary and sufficient condition

that T n r t i that

n-aZI--H~ s "(Hn)

where the sequence H n) is either IT n] or It a)

We have to prove that

(A) Tn  t n

is equivalent to

n-1
(-3) XIIT 5 'n~s T o(Tn)

and also to

n-1

) tstn - o(t )
s-1

In the course of the argument we shall consider alao

the logical standing of the statements
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I. t

(v) 'n t rI

( ) _n , t , 'I

s-i(.)Lv 6v - o(v n )

By (2.3), we see that

.4 4..PZ

Again the relationship (2.2) between (T.) and (vn) is

the same as (1.2) between (G and (gn. Hence

by the result of [2] quoted in §1 of this paper. We

shall prove below that

(3.1)
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Using these, we have

Hence

and this is Theorem 2.

It remains to prove (3.1) and (3.2). We start

by assuming J. Let b be the least integer such that

Vb > 0. By (2.3) and (2.4), vn > 0 when n e c. Then,

for n > b + c, we have

Vn-b > O, VbVnb - O(V), V /Vnfb > OD

as a -. 0. Hence v --> CO. Again

min V > K1.

Hence, if n > 2c, we have by (2.1) and
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which m~n/2 m:n/2l m,n/2i n JV)

n-l n-1

which isHence we have

It remains only to prove that 4 ip Assume o

true. We ded'ice -i from A just as we deduced 4from

~above, so that wie have v~ n %, tn * Hence

We now write

n-1 c-i n-C nL-i

Iv v TZ +ZT + E -iI+J
s-1 0-i s-c S-fl-i+l

(nay). By Aand (3.3), we have

n-c n-c

J2 EVsVn-s < Kytstn- - o(tn).
SWC s-c
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I
11 tL > 2c, then by (2.1) and (3.3)

J3 " T a V V_ 8 < K v at 5

K4- m t M n-mk<c Ik<c

Now let I 4 m 4 mk < c. We write K2 for the least

non-zero value of tm , unless every t. 0, in which case

we write K2 - 1. By 1,

titn.k °(n k~ ), tk

ttk - tnk - o(t n )

t t~ K 1-k ou.tn-mk 2~ n

We have then

3 -J,~ <t K ~O(t) ZIK k -o(t)
sk<c rk<c

Hence

n-1

s- 8Vs + J 2 + J3 0 (tn) O(v n)

and t-hs is Ah.
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4. Theorem 3. A necessary condition for (1.5)

is that either side of (1,6) diverges for all non-zero

X.

In this paragraph the words "for all non-zero XV

are understood after every use of the word "divergence".

By Theorem 2 of [2] the divergence of TZGnXn and of

)_gnXM is a necessary condition for (1.3). But (1.3)

is equivalent to (1.4) with (G n ] or (g for tMn . Hence

(1.4) implies the divergence of T-n x n and so, by Thee

of this paper, (1.5) implies the divergence of (1Tn
x

5
n

and of -tn n  Finally the divergence of Ztnx implies

the divergence of the product on the right hand side of

(1.8).
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